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[11 Aided by submarine observations of ice thickness for model evaluation, we
investigate the effects of assimilating buoy motion data and satellite SSM/I (85 Ghz) ice
motion data on simulation of Arctic sea ice. The sea-ice model is a thickness and enthalpy
distribution model and is coupled to an ocean model. Ice motion data are assimilated
by means of optimal interpolation. Assimilating motion data, particularly from drifting
buoys, significantly improves the modeled ice motion, reducing the error to 0.04 m s '
from 0.07 m s~ and increasing the correlation with observations to 0.90 from 0.66.
Without data assimilation, the modeled ice moves too slowly with excessive stoppage.
Assimilation leads to more robust ice motion with substantially reduced stoppage, which
in turn leads to strengthened ice outflow at Fram Strait and enhanced ice deformation
everywhere. Enhanced deformation doubles the production of ridged ice to an Arctic
Ocean average of 0.77 m yr ', and raises the amount of ridged ice to half the total ice
volume per unit area of 2.58 m. Assimilation also significantly alters the spatial
distribution of ice mass and brings the modeled ice thickness into better agreement with
the thickness observed in four recent submarine cruises, reducing the error to 0.66 m from
0.76 m, and increasing the correlation with observations to 0.65 from 0.45. Buoy data
are most effective in reducing model errors because of their small measurement error.
SSM/I data, because of their more complete spatial coverage, are helpful in regions with
few buoys, particularly in coastal areas. Assimilating both SSM/I and buoy data combines
their individual advantages and brings about the best overall model performance in
simulating both ice motion and ice thickness.  INDExX TERMS: 4207 Oceanography: General:
Arctic and Antarctic oceanography; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and

data assimilation; 4540 Oceanography: Physical: Ice mechanics and air/sea/ice exchange processes;
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1. Introduction

[2] Sea ice in the polar oceans plays a significant role in
the changing Earth climate system. The climatic impor-
tance of sea ice has led to many efforts to improve sea-ice
models. Some efforts have aimed at improving sea-ice
morphology, dynamics, and thermodynamics in the models
[e.g., Maykut and Untersteiner, 1971; Thorndike et al.,
1975; Semtner, 1976; Pritchard et al., 1977, Parkinson
and Washington, 1979; Hibler, 1979; Ebert and Curry,
1993]. One particular example is the evolution of a two-
category sea-ice model, based on work by Hibler [1979],
to a multicategory Eulerian thickness distribution sea-ice
model, based on the thickness distribution theory of
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Thorndike et al. [1975] and the numerical implementation
of Hibler [1980]. The multicategory thickness distribution
sea-ice model calculates ice thermodynamic growth and
decay over a variety of ice thicknesses, explicitly simulates
the ice ridging process that links ice deformation to a
redistribution of ice thicknesses, and therefore better cap-
tures the essence of the coupling of dynamic and thermo-
dynamic sea-ice processes than the two-category model.
The Hibler [1980] thickness distribution model has been
improved by Flato and Hibler [1995] to simulate the
evolution of the thickness distributions of undeformed
ice, ridged ice, and snow. It has been further improved
by Zhang and Rothrock [2001] to incorporate the distri-
bution of ice enthalpy. Zhang and Rothrock’s [2001]
thickness and enthalpy distribution (TED) model is able
to conserve ice mass as well as thermal energy during ice
advection, growth or decay, and ridging.
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[3] Other efforts to improve sea-ice modeling have aimed
at assimilating observational data into the models. These
took advantage of the great advances that have been made
in polar observational capabilities in the last 2 decades.
These advances have led to a rich collection of data on sea
ice, including, among others, buoy observations of ice
motion, satellite passive microwave observations of ice
motion, and submarine observations of ice thickness. Some
of these observations are of sufficient coverage and duration
to have been effectively assimilated into sea-ice models
with varying degrees of complexity [e.g., Thomas and
Rothrock, 1989, 1993; Thomas et al., 1996; Meier and
Maslanik, 1999; Meier et al., 2000]. Particularly, the study
by Meier and Maslanik [1999] employed an optimal inter-
polation technique to assimilate ice motion data derived
from passive microwave imagery acquired by the Special
Sensor Microwave/Imager (SSM/I) [Agnew et al., 1997;
Kwok et al., 1998; Liu and Cavalieri, 1998]. Their study
was perhaps the first effort to assimilate observed ice
motion data into a large-scale multicategory thickness dis-
tribution model in order to maximize the model accuracy.
They were successful in obtaining improved ice motion
output with reduced error. They also reported that assim-
ilating SSM/I ice motion data induces physically unreal-
istic changes in ice thickness near the Greenland coast and
Canadian Archipelago. However, it is unclear how un-
realistic these changes are, and if there is any assimilation-
induced improvement in ice thickness in other areas of the
Arctic Ocean. The question is, if assimilation of ice
motion data can reduce the error of modeled ice motion,
does it also reduce the error of modeled ice thickness and
to what degree? As mentioned before, an important feature
of a thickness distribution model is its inclusion of the
physics of ice ridging that strongly depends on ice
deformation. What then is the role of ice deformation,
within the context of data assimilation, in ice ridging and
therefore in ice thickness?

[4] Armed with submarine observations of ice thickness
for model evaluation, this study is aimed to address these
questions. We carried out this study with a 12-category TED
sea-ice model coupled with an ocean model. An optimal
interpolation procedure is employed in the coupled ice-
ocean model for a series of data-assimilation simulations
using ice motion data either collected from buoy observa-
tions or derived from SSM/I 85-GHz imagery. The model
components are described more fully in section 2. Section 3
describes the optimal interpolation assimilation procedure.
Section 4 describes how the simulated ice motion, defor-
mation, and thickness fields, with or without data assim-
ilation, compare to buoy motion data and to recently
available ice thickness data from submarines. In section 5,
we summarize the results.

2. Model Description

[s] The coupled ice-ocean model consists of two compo-
nents: a 12-category TED sea-ice model and an ocean
model. The models are coupled in such a way that heat,
mass, and momentum are conserved. Some aspects of the
sea-ice model are described in the following sections. The
ocean model is based on the Bryan-Cox model [Bryan,
1969; Cox, 1984] with an embedded mixed layer of Kraus
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and Turner [1967]. Detailed information about the ocean
model is given by Zhang [1993] [see also Zhang et al.,
1998a, 1998Db].

2.1. Sea-Ice Model

[6] The 12-category TED sea-ice model consists of five
main components: a momentum equation that determines
ice motion, a viscous-plastic ice rheology with an elliptical
yield curve that determines the relationship between ice
deformation and ice internal stress, a heat equation that
determines ice growth/decay and ice temperature, two ice
thickness distribution equations that conserve ice mass, and
an enthalpy distribution equation that conserves ice thermal
energy. The first two components are described in detail by
Hibler [1979]. The ice momentum equation, using Ip’s
[1993] seasonally varying air drag coefficients and turning
angles, is solved employing Zhang and Hibler’s [1997]
numerical model for ice dynamics. The heat equation is
solved, over each category, using Winton’s [2000] three-
layer thermodynamic model, which divides the ice in each
category into two layers of equal thickness beneath a layer
of snow. The ice thickness distribution equations are
described in detail by Flato and Hibler [1995] and briefly
presented here. There are two conservation equations for
thickness distributions of ridged ice and undeformed ice,
respectively, which are written as

Jgr _O(frgr)
g _ 0(fugu)
8t - V (ug'l) ah + \Vu + F“ (2)

where the subscript r refers to ridged ice, the subscript u
refers to undeformed ice, g,(4) and g,(h) are the ridged and
undeformed ice thickness distributions, respectively, u is ice
velocity, f, and f, are ice growth rates, v, and v, are the
redistribution functions, or source terms, that describe the
change in thickness distribution due to ridging, and F, and
F,, are called source terms of lateral melting by Flato and
Hibler [1995]. Note that g(h) = g,(h) + g,(h) is defined here
as the (total) ice thickness distribution which is a normal-
ized probability density function. The parameters governing
the ridging process, such as the frictional dissipation
coefficient, the ridge participation constant, and shear
ridging parameter, are given by Flato and Hibler (see their
Table 3 for the standard case).

[7] The ice enthalpy distribution equation is written as
[Zhang and Rothrock, 2001]

2e
or

—V - (ue) —%JFHFH@, 3)

where e(h) = g(h)H(h) is the ice enthalpy distribution
function, H(h) = f: pc,T(z,h)dz is ice enthalpy per unit
area, p is ice density, ¢, is ice heat capacity, /# is ice
thickness, 7'is ice temperature, /= f, = f,, is ice growth rate,
F; =F,+ F, is the total source term for lateral melting, and
® is the enthalpy redistribution function.

[8] Accompanying the ice model is a snow model
described in terms of snow thickness distribution, gy(%).
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The snow conservation equation, the treatment of the snow
thickness distribution, and the treatment of the thermody-
namics at the ice/snow/ocean surface, including surface
albedo, are determined by Flato and Hibler [1995, Appen-
dix]. All the snow and ice thermodynamic parameters used
here are the same as those used in the standard case of Flato
and Hibler [1995].

2.2. Numerical Framework and Surface Forcing

[9] The model domain covers the Arctic, Barents, and
GIN (Greenland-Iceland-Norwegian) seas (Figure 1). It has
a horizontal resolution of 40 km x 40 km, 21 ocean levels,
and 12 thickness categories each for undeformed ice, ridged
ice, ice enthalpy, and snow. The partition of ice thickness
categories are given by Zhang et al. [2000].

[10] Daily surface atmospheric forcing from 1992 to 1997
was used to drive the model. The forcing consists of
geostrophic winds, surface air temperature, specific humid-
ity, and longwave and shortwave radiative fluxes. (The
forcing can be downloaded from the web site http://psc.apl.
washington.edu/POLES/model forcings/ModelForcings.
html.) The geostrophic winds are calculated using the sea
level pressure (SLP) fields from the International Arctic
Buoy Program (IABP) [see Colony and Rigor, 1993]. The
2-m surface air temperature data are derived from buoys,
manned drifting stations, and land stations [Rigor et al.,
2000]. The specific humidity and longwave and shortwave
radiative fluxes are calculated following the method of
Parkinson and Washington [1979] based on the SLP and
air temperature fields. Model input also includes river runoff

Model domain and bathymetry. Bathymetry contour interval is 1400 m. Fram Strait and Franz

and precipitation detailed by Hibler and Bryan [1987] and
Zhang et al. [1998a].

3. Data Assimilation
3.1. Ice Motion Data Sets

[11] Buoy motion data and SSM/I 85 Ghz imagery-
derived ice motion data from 1992 to 1997 are used for
data assimilation. The daily buoy data were provided by the
IABP [Colony and Rigor, 1993]. On any given day from
1992 to 1997, there are between 10 and 30 buoy motion
measurements irregularly and sparsely distributed in the
Arctic. The uncertainty, or error standard deviation (SD), of
the buoy data is 05, = 0.007 m s~! [Thorndike and
Colony, 1980] [see also Meier et al., 2000].

[12] The Jet Propulsion Laboratory (JPL) Remote Sens-
ing Group provides both 1-day and 2-day SSM/I ice motion
data sets. The SSM/I data are gridded data and have better
spatial coverage than the buoy data, but the number of
available data vary temporarily (with no coverage in sum-
mer from June 1 to September 30). When compared to buoy
displacements, the estimated uncertainty or error SD is
O'SSM/I 0.058 m s~ ! for the 1 -day SSM/I data and 0.040

! for the 2- day SSM/I data [Kwok et al., 1998]. When
compared to 1-day buoy velocities, the estlmated error SD
of the 2-day SSM/I ice motion is either 0.045 m s~' or
0.069 m s~ ', depending on how it is aligned in time with the
1-day buoy motion [Lindsay, 2002]. The average error SD
of the 2-day SSM/I ice motion, compared to 1-day buoy
motion, is about 0.057 m s L
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[13] Which SSM/I data set should we use? To answer this
question, we have conducted a series of model runs assim-
ilating (following the data assimilation procedure described
in section 3.2) either the 1-day data or the 2-day data with
error SDs of 4 x 0.058 ms~!, 2 x 0.058 ms™', 0.058 m
s~', 0.058/2 m s~', and 0.058/4 m s~ ', respectively. We
have found that, in comparisons with buoy drift data and
submarine ice thickness data, assimilating the 2-day data
generally reduces model errors in ice motion and thickness
more substantially than assimilating the 1-day data. We
have also found that the model agrees best with the
observations when assimilating the 2-day data with an error
SD of 0.058 m s~ '. Therefore we have chosen the 2-day
SSM/I data with the error SD of 0.058 m s ' for our
standard data assimilation runs.

3.2. Method of Optimal Interpolation

[14] Our goal is to use observed ice velocity data to
correct model estimates of ice velocities using an optimal
interpolation (OI) assimilation procedure. The OI procedure
has a long history of applications for meteorological data. It
was also used for interpolating the sea level pressure
observations of Arctic buoys into the sea level pressure
fields [Thorndike and Colony, 1980], and temperature
observations of buoys and land stations into the surface
air temperature fields [Rigor et al., 2000]. It was further
used by Meier and Maslanik [1999] and Meier et al.
[2000] to assimilate ice motion observations. The proce-
dure used in this study is, however, somewhat different
from that of Meier et al. [2000]. The main difference is
that the present procedure uses correlation functions that
are Gaussian and positive definite, and allows ice diver-
gence in a two-dimensional ice velocity field [Thorndike,
1986; Moritz, 1988].

[15] Let Uy = (u, v)" be the true ice velocity to be
estimated at some location X; = (x, o). The model-
evaluated ice ve1001ty Uy is a “first guess™ of the true value
at X, and U, is a set of N observations at arbitrary points X;
@i=1,..., N). An estimate of U, can be determined by a
linear combination of the first guess and the observations

Uy = U +4,(U = U) (4)

where 4 = (ax;, a2, akN) and U-U-= [((71 U1) ,
(U, —0,)",...,(Uy — Uy)"]". The OI procedure allows
the weights Ak to be determined by a least squares mini-
mization of the error variance of the estimate (EkEk>
where £ = U — U and the angle brackets () denote the
expected value operator. This leads to

ay = Ru[Ry + by0%,/0”] ! (5)

<EkE[> = (1 — ak,-Rk,-)oz, (6)
where R; = <EiEjT /o is the correlation between the first
guess errors at locations X; and X, §; is the Kroneker
delta, o, is the error SD of observations, and ¢ is the
error SD of the first guess. Error varrances of observations
and the first guess are 02, and o, respectively. The
correlation function R; can be determined following
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Thorndike [1986] for a homogeneous,
dimensional velocity field such that

isotropic two

Ry = R(X;, X))
cos? 0B (r) + sin” 0B, (r)  cosOsin0(B(r)
cos 0sin O(B (r)

—B.(r)
—B,(r) sin? 0By (r) + cos? 0B (r)

()

where 7* = (x; — x,)* + (3 — ¥:)% cos 0 = (x; — x;)/r, sin 0 =
(y; — yo)ir, B)|(r) is the error correlation between components
of velocity parallel to the line joining X; and X, and B, (r) is
the error correlation between components of velocity per-
pendicular to that line. According to Thorndike [1986], B)|(r)
and B, (r) are subject to a constraint that the variance of a
vector consisting of a linear combination of ice velocities,
such as that in equation (4), is non-negative. Such a
constraint can be satisfied by introducing positive definite
correlatlon functions of Gaussian forrns By(r) = 0% exp
[—(/L)*] and B (r) = 0° [1 — 2(r/L)*] exp [—(+/L)*], where
L is the correlation length scale. These two correlation
functions are associated with a nondivergent ice velocity
field that can be determined by a stream function y such that
u,, = V. Noticing the existence of ice divergence in reality,
Moritz [1988] allows ice velocity to be represented by not
only a stream function y but also a velocity potential X, such
that u = u,, + u,, with uy = Vx_containing the divergent part
of the velocity field. Thus Moritz [1988] was able to derive
the following correlation functions that are positive definite
and allow ice divergence:

By(r) = o*[(1 = v)exp(—r}) + v(l = 23) exp(=13)]  (8)
Bi(r) = o’ [(1 —v)(1 = 2r7) exp(—ri) + vexp(—r3)]  (9)
where ry = r/Ly, r» = r/Ly, L\, and L, are correlation length

scales for the ice velocity components corresponding,
respectlvely, to the stream function and velocity potential
V=0 /0 and 0 is the error variance due to the divergent
motlons Note that v can be taken as the contributing factor
of divergent motions to the total velocity error variance. For
simplicity, we assume L,, = L, = L.

[16] The correlation functions By (r) and B, (r) are esti-
mated by conducting spatial correlation analysis on the
differences between model-evaluated ice velocity and buoy
velocity to determine L and . Over 112,000 pairs of velocity
differences (buoy velocities minus modeled velocities inter-
polated to the buoy points) during 1979—1993 were used
for correlation analysis, which led to L = 736 km and v =
0.27 as the best fit. The spatial distribution of the standard
deviation of model velocity error, o = o (x, y), is determined
in the same way. It is location dependent and has a mean
value of 0.068 m s~ ! over the Arctic. The model error,
together with 0p0,, and ogsyyy given in section 3.1, is used
in equations (5), (8), and (9) for the OI assrmrlatron
procedure During the procedure, a search of the observa-
tions in a range of 2000 km around each model grid cell is
carried out, which allows a maximum of 5 buoy data and 10
SSM/I data near the cell to be used for OI. This requires a
solution of a matrix with up to 3030 elements for each grid
cell when both buoy and SSM/I data are assimilated. The
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Table 1. Winter Comparisons of Model Velocities to Unassimi-
lated Buoy Velocities (m s~ ') With a Mean Speed of 0.075 m s~
and a SD of 0.093 m s~

Number of Mean
Buoy Data Model

SD of Error
Model SD Correlation

Case Compared Speed Bias Motion (o,) (R)
Model only 12095 0.049 —0.026 0.066 0.070 0.66
Model+ssmi 12095  0.065 —0.010 0.074 0.053 0.82
Model+buoy 12095  0.072 —0.003 0.087 0.044 0.88
Model+buoy+ssmi 12095 0.068 —0.007 0.081 0.041 0.90
Buoy data 0.007
SSM/I data 0.057

assimilation procedure is applied after the first guess ice
motion is determined by solving the ice momentum equa-
tion. The assimilated ice motion is then used to solve
equations (1), (2), and (3). The procedure increases the
model run time by about one third. One-year integration on
a HP C180 workstation consumes about 3 hours with no
assimilation and 4 hours with assimilation.

[17] Note that the lateral boundary condition requires zero
ice velocity at the model coast. Assimilation of ice motion
data often fails to meet such a requirement, which is likely
to cause artificial ice deformation at the coast. It is found
that the spurious deformation at the coast causes excessive
ice buildup in the TED model because of the ridging
process. To avoid the spurious ice buildup, the Ol-induced
velocity component, the second term in equation (4), is
linearly reduced from its full value at 240 km off the coast
to zero at the coast. The value of 240 km is arbitrary, but the
treatment is effective in eliminating the spurious ice
buildup.

4. Assimilation Results

[18] In order to obtain insight into how assimilation of ice
motion observations affects the ice velocity, deformation,
and thickness simulated by a TED model, we examine 4
model runs with no assimilation or with different assimila-
tion procedures. They are (1) Model only: model run with-
out data assimilation; (2) Model+ssmi: model run with
assimilation of SSM/I 2-day data only; (3) Model+buoy:
model run with assimilation of daily buoy data only; and (4)
Model+buoy+ssmi: model run with assimilation of daily
buoy data and SSM/I 2-day data. These model runs were
carried out for the period of 1992 to 1997 with the same
initial conditions obtained by running the Model only case
from 1979 to 1991. 1992 is taken as a year of transition and
the results for 1993 to 1997 are compared to the buoy
motion data as well as the submarine ice thickness data.

4.1. Ice Motion
4.1.1. Statistical Analyses

[19] The efficacy of the different assimilation procedures
can be evaluated by comparing the model velocity with the
velocity of buoys that are not assimilated. Special assim-
ilation runs were performed for the Model+buoy and
Model+buoy+ssmi cases in which only odd numbered
buoys were assimilated. Over the 5-year period, there were
19,861 velocity observations from odd numbered buoys
used for assimilation and 18,605 from even numbered
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buoys used for comparisons. These two sets of buoys have
the same mean speed of 0.080 m s~ ' and velocity SD of
0.096 m s, indicating that their roles are interchangeable
without changing the outcome of the comparisons. The
even-numbered buoy data and the corresponding model
velocities are compared over winter (defined as October—
May) when there are SSM/I data for assimilation and
summer (defined as June—September) when there are not.
Tables 1 and 2 show the winter and summer comparisons of
the model velocities to the velocities of the unassimilated
even-numbered buoys. Also included in Table 1 are the
error SDs of buoy data and SSM/I data, 04, and ogsyy.

[20] In winter, the velocity calculated by the Model only
run has the highest bias, the highest error SD (o.), and the
lowest correlation (R). Data assimilation significantly
reduces the bias and error SD, and increases the correlation.
The reduction in bias and error SD and the increase in
correlation is most pronounced in the Model+buoy case.
This is because the buoy motion error, 6, = 0.007 m s~ s
considerably smaller than the modeled motion error, 0,z =
0.070 m s~ ', which affords the buoys great leverage for
improvement. However, the error SD (0.044 m s~ ') in the
Model+buoy case is still well above the buoy error. This is
expected, since the assimilated ice velocity is a combination
of model’s first guess and statistically weighted observations
as described in equation (4), and because the assimilated
buoys are not collocated with the comparison buoys.

[21] Although assimilating only SSM/I data also signifi-
cantly reduces model velocity bias and error SD, the
reduction is not expected to be as great as that made by
assimilating buoy data. This is because the error SD of the
SSM/I motion is much closer to that of the model’s first
guess than the error SD of the buoy motion. The smaller
difference between the error SDs of the SSM/I data and the
model’s first guess gives the SSM/I data a moderate weight
in equation (4). The question is: why not allow SSM/I data
to be more strongly weighted in the OI assimilation proce-
dure so as to magnify their influence in the model? As
mentioned in section 3.1, artificially reducing the error SD
for SSM/I observations in equation (5) and therefore
increasing their weights in equation (4) does not improve
the model results. On the other hand, the statistical tests do
not operate where there are SSM/I data but no buoy data.
Therefore the improvement made by SSM/I data may be
underestimated, given that SSM/I data have a much better
area coverage in the Arctic than buoy data. Because of their
better coverage, assimilating SSM/I data in addition to buoy
data (Model+buoy+ssmi) further improves the calculation

Table 2. Summer Comparisons of Model Velocities to Unassimi-
lated Buoy Velocities (m s~ ') With a Mean Speed of 0.087 m s~
and a SD of 0.102 m s~ '*

SD of Error
Model SD Correlation

Number of Mean
Buoy Data Model

Case Compared Speed Bias Motion (o,) (R)
Model only 6510  0.073 —0.014 0.088 0.070  0.74
Model+ssmi 6510  0.076 —0.011 0.090 0.070  0.74
Model+buoy 6510  0.085 —0.002 0.100 0.056  0.85
Model+buoy-+ssmi 6510 0.085 —0.002 0.099 0.056 0.85

“No summer SSM/I motion data are assimilated.



ZHANG ET AL.: ASSIMILATION OF ICE MOTION OBSERVATIONS

S <

, -
/\'\\\'\\,/ /
V4 I'd
._\‘\'\'\\__/ A
/,«\\\\_,
é‘/,-\\'\_k{

1

-/‘\B;,,/ /

\\\\
——

——

:
A
=

(b) Obseryations

AR RN \

. '\\\.\‘\\\\

rrrrrrr

Figure 2.

of ice motion, achieving the best overall performance in
comparison with the unassimilated buoys.

[22] In summer the velocities calculated by the Model
only case compare better statistically with the velocities of
the even numbered buoys with a reduced bias and increased
correlation (Table 2). Why does the Model only case behave
better in summer than in winter? The answer to this question
is elusive. To speculate, it could be that the air drag or water
drag is more realistic for summer, or that the ice strength
parameterization is less realistic for winter when ice is thick
and strong, or that the model simply better handles the
summer conditions of thinner ice and free drift. Since there
are no SSM/I data in summer, there is no improvement from

Ice velocity fields for January 1, 1993, modeled by (a) the Model only run, (c) the
Model+ssmi run, and (d) the Model+buoy+ssmi run; one vector is drawn for every 9 grid cells. (b) Buoy
velocities (thick vectors) and SSM/I ice velocities (thin vectors) assimilated for January 1, 1993.

assimilating only SSM/I data. Assimilating buoy data still
improves the model behavior in summer, but to a lesser
degree: The error SD of the Model+buoy case in summer
does not decrease as much as in winter. This may be
attributed to two factors: the Model only run performs better
in summer, and both buoy and model velocities have higher
summer mean speed and SD. The ratio of error SD and
buoy velocity SD in summer is close to that in winter.
4.1.2. Velocity Fields and Distributions

[23] From here on, the results for the Model+buoy and
Model+buoy+ssmi assimilation runs include all the buoys,
both odd and even numbered. Figure 2 shows an example of
how assimilation influences the modeled ice velocity for the
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first day of 1993. Figure 2a is the velocity field simulated
by the model run without assimilation. Figure 2b shows
the buoy and SSM/I velocity vectors assimilated for that
day. Some of the SSM/I vectors are aligned with the buoy
vectors, some are not, which reflects the sizable uncer-
tainty of the SSM/I data. The velocity pattern is substan-
tially changed by data assimilation in most of the Arctic
Basin (Figures 2c¢ and 2d). In the central Arctic the
modeled velocities are steered toward Fram Strait by the
SSM/I and buoy observations. The influence of the buoy
data appears most noticable in the Beaufort Sea, in Fram
Strait, and near Franz Josef Land (Figures 2c¢ and 2d).
This is attributed to the fact that the buoy motion error is
about one order of magnitude smaller than the model
velocity error, which allows buoy data to be heavily
weighted in equation (4).

[24] The cumulative effect of assimilation on the spatial
distribution of ice velocity over 1993—1997 is shown in
Figure 3. The assimilation accelerates ice in most of the
Arctic regions, including specifically the East Siberian,
Laptev, Kara, Beaufort, and Greenland seas. The anticy-
clonic ice circulation is more confined to the Beaufort Sea,
which is in line with the climatological buoy motion field
[Rigor et al., 2002]. The transpolar ice stream is stronger
and is better aligned with the climatological transpolar buoy
drift [Rigor et al., 2002]. As shown in Figures 3d and 3e, the
influence of SSM/I data on the ice velocity field is similar to
that of buoy data in the Beaufort Sea and is different from
that of buoy data in the East Siberian Sea and near Fram
Strait. The velocity field from the Model+buoy+ssmi run
(Figure 3f) looks more like that from the Model+buoy run
than that from the Model+ssmi run. This indicates that,
when a combination of SSM/I and buoy data is assimilated,
the effect of SSM/I data is moderate and the effect of buoy
data is strong. Perhaps the most notable difference between
the velocities calculated by the Model+sssmi case and the
Model+buoy+ssmi case or the Model+buoy case lies in the
strength of the transpolar ice stream and the ice outflow at
Fram Strait. Assimilating buoy data induces even larger ice
speed at Fram Strait where buoys often speedily exit the
Arctic and the satellite remote sensing may not be very
effective in tracking the ice moving particularly fast in that
area.

[25] Figure 4a compares the distributions of the buoy drift
speeds and the simulated ice speeds at the buoy locations. A
conspicuous feature is the Model only case’s substantial
overestimate of ice stoppage (see the large peak for zero
speed), indicating that the ice dynamic component of the
model needs further improvement. Assimilation reduces the
stoppage rather successfully. It also improves the estimate
of ice moving with a speed larger than 0.04 m s~'. The
speed distribution from the Model+ssmi case is very close
to that from the Model+buoy case, indicating that SSM/I
data are very effective in improving the ice velocities at the
buoy locations. Furthermore, the distribution from the
Model+buoy+ssmi run has the best match with that from
the buoy observations over the whole speed range, indicat-
ing that the SSM/I data’s better area coverage further
contributes to the improvement of the simulated ice motion.

[26] In fact, the effect of SSM/I data is more noticable in
Figure 4b, which shows the simulated ice speed distribution
over the Chukchi, East Siberian, and Laptev seas, where
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few buoys were deployed. Assimilating SSM/I observa-
tions, with their large area coverage, reduces the stoppage in
the shelf regions more substantially than assimilating only
buoy observations, observations that are often distant from
the shelves.

4.2. Ice Outflow

[27] Figure 5a shows the simulated annual mean ice areal
outflow at Fram Strait. Also included in the figure is the
areal outflow estimated by Kwok and Rothrock [1999] using
SSM/I data acquired from both 85 Ghz and 37 Ghz
channels. To varying degrees, assimilation elevates the ice
areal outflow owing to its strengthening of the transpolar ice
stream. Not surprisingly, the results from the Model+ssmi
run best match the estimates by Kwok and Rothrock [1999]
(see also Table 3). The increase in ice areal outflow
resulting from assimilating only SSM/I data is generally
smaller than the increase resulting from assimilating buoy
data, which is in agreement with Figure 3, which shows that
buoy data give even larger ice speeds at Fram Strait. The ice
areal outflow with assimilated buoy data is increased sub-
stantially in 1993 and 1994, but is suppressed a little by
additionally assimilating SSM/I data. The huge increase in
areal outflow in these two years may be linked to a large
number of fast-moving buoys (Figure 5b) in the Fram Strait
area. This suggests the need for more continual and accurate
velocity observations in Fram Strait.

[28] Figure 5b shows the simulated annual mean ice
volume outflow at Fram Strait and the estimates from Vinje
et al. [1998] using ice draft observations from moored
sonars. Again, assimilation increases ice volume outflow,
corresponding to the increase in ice areal outflow at Fram
Strait. While it brings the simulated areal outflow closer to
the estimate of Kwok and Rothrock [1999] for 1993, it
causes a large increase in volume outflow over the estimate
by Vinje et al. The assimilation-enhanced ice volume out-
flow is in a better agreement with Vinje et al. for 1994.
Assimilation does not change the volume outflow for 1995;
all the model runs generate more outflow than the estimate
of Vinje et al, a possible bias caused by either model
forcing or model physics. Over the 1993—-1995 period
covered by the estimates of Vinje et al., the modeled volume
outflow is about 13—27% larger than the estimates (Table 3),
which may be partially due to data assimilation, partially
due to errors in the model forcing or physics, and possibly
due to observation errors.

4.3. Ice Deformation

[20] How does assimilation impact the modeling of ice
deformation? Given that it increases ice speed and reduces
ice stoppage, we expect an increased ice deformation rate.
Figure 6 shows the simulated fields of ice deformation
rate for the first day of 1993. Here deformation rate
(simply called deformation hereinafter) is defined as
\/(é” +én)+ (En —én)? + 48, Where € is the second order strain
rate tensor. The ice deformation simulated by all four cases
is generally within the range of 0—10% d~'. Deformation is
significantly increased by assimilating either SSM/I data or
buoy data. For the selected day, the deformation calculated
by the Model+ssmi and Model+buoy+ssmi cases is smaller
than that calculated by the Model+buoy case in some areas,
such as the Eurasian Basin and Fram Strait, where there are
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Figure 3.
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Figure 4. (a) Distributions of simulated ice speed and
observed Arctic buoy drift speed, based on all the available
daily buoy drift data for the Arctic from 1993 to 1997 and
simulated daily mean ice velocities corresponding to the
times and locations of buoy data. (b) Distributions of
simulated ice speed for the Chukchi, East Siberian, and
Laptev seas from 1993 to 1997.

quite a few buoys (Figure 2). This illustrates the role of
moderation the SSM/I observations often play when jointly
assimilated with buoy data.

[30] However, SSM/I data do not seem to play a role of
moderation in shaping ice deformation over a longer
timescale, as seen in the fields of averaged ice deforma-
tion (Figure 7). Quite the contrary, SSM/I data increase
ice deformation almost everywhere in the Arctic than
buoy data do. One possible reason is that the SSM/I data
have a wider spatial coverage than the buoy data, which
consistently cause a larger ice deformation in areas where
buoys’ influence is sporadic, particularly in the shelf
regions.

[31] Figure 8 shows deformation distributions for the
entire Arctic Basin during 1993—-1997. As can be seen,
the Model only run creates the highest percentage of low
deformation (<1% d™'), in line with its excessive ice
stoppage (Figure 4). Assimilation significantly reduces the
percentage of low deformation and increases the deforma-
tion over a wide range of larger values. The SSM/I data are
more effective in reducing the percentage of low deforma-
tion and in increasing the percentage of higher deformation
than the buoy data, in line with the fields of deformation
shown in Figure 7.
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Figure 5. Annual mean ice outflows of (a) area and (b)
volume at Fram Strait. Also included are the estimate of ice
areal outflow in Figure 5a by Kwok and Rothrock [1999]
using SSM/I ice motion data, and the estimate in Figure 5b
by Vinje et al. [1998] using ice draft data from moored
sonars. The histograms in Figure 5b show the annual
number of buoy motion data in the Fram Strait area.

[32] Lindsay et al. [2003] compare the ice deformation
rate from these same series of simulations to highly accurate
observations of the deformation rate provided by the
RadarSat Geophysical Processor System (RGPS [see Kwok,
1998]). The RGPS follows thousands of locations in satel-
lite synthetic aperture radar images. The spatial separation
of the points is roughly 10 km and the temporal sampling is
typically 3 days. A 10-month period starting in the fall 1997
was analyzed. The correlation of the total deformation,
estimated for a spatial scale of 320 km, between the Model
only run and the observations is very low at all locations in
both winter and summer. However, the correlation between

Table 3. Observed Mean Ice Areal Outflow (10° km? yr~") From
Kwok and Rothrock [1999], Observed Mean Ice Volume Outflow
(10° km® yr—") From Vinje et al. [1998], and Simulated Mean Ice
Areal and Volume Outflows, All at Fram Strait®

Areal Outflow Volume Outflow

Case (1993-1996) (1993-1995)
Kwok and Rothrock [1999] 1.02(-)
Vinje et al. [1998] 3.33(-)
Model only 0.96 (0.94) 3.04 (2.56)
Model+ssmi 1.03 (1.01) 3.75 (3.41)
Model+buoy 1.21 (1.15) 4.24 (3.54)
Model+buoy+ssmi 1.15 (1.10) 4.12 (3.60)

“Numbers in parentheses are 19931997 mean.
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Figure 6. Modeled ice deformation (% d~') for January 1, 1993.

the Model+buoy+ssmi run and the observations is high in
the winter far from the coasts (maximum R = 0.87). In the
summer it is generally quite low except in regions where
many buoys were available for assimilation.

4.4. Ice Thickness

4.4.1. Influence on Ice Ridging

[33] Figures 6, 7, and 8 show that assimilating ice motion
observations considerably enhances ice deformation. It is
therefore no surprise that assimilation increases ridged ice
production (Figure 9). (There are no negative values in the
difference fields in Figure 9.) The buoy-induced increase in
ridged ice production is particularly large near the Canadian
Archipelago and the North Greenland coast where it is
somewhat subdued by additionally assimilating SSM/I data
(Figures 9b and 9c). The SSM/I-induced increase is small
near the coast of Alaska and relatively large in the East
Siberian and Laptev seas because of a stronger ice motion in
the shelf regions shown in Figure 4b. Although their spatial
distributions of ridged ice production are strikingly different
(Figure 9), any of the three assimilation runs roughly

doubles the basin-wide mean annual ridged ice production
(Table 4).

[34] Five annual cycles of the ridged ice thickness as well
as the undeformed and total (ridged plus undeformed) ice
thicknesses are illustrated in Figure 10. By ridged ice
thickness we mean ridged ice volume per unit area, and
similarly for undeformed ice thickness. Without data assim-
ilation, the model estimates a mean ridged ice thickness well
under 1 m and a mean undeformed ice thickness close to 2
m; ridged ice is about one quarter of the total. Data
assimilation decreases the amount of undeformed ice,
increases the ridged ice, and brings the ridged ice up to
about half of the total.

[35] What explains the increased amplitude of the sea-
sonal cycle of total ice thickness (Figure 10c, Table 4) when
buoy or SSM/I data are assimilated? In winter, more
deformation converts more undeformed ice to ridged ice.
At the same time, it produces more open water in which
most of the undeformed ice lost to ridging is replenished.
Thus there is more production that raises the winter max-
imum. Ridged ice tends to melt more rapidly in summer
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Model only

Model+ssmi

Figure 7. Modeled ice deformation (% d ') averaged over 1993—1997.

because of its greater areal contact with warmed surface
water, which, together with the increased outflow owing to
assimilation (Figure 5), removes the excess ice produced
during the winter, and leaves the annual minimum largely
unaffected by assimilation.

[36] Figure 11 compares the simulated mean ice thickness
fields. The pattern of the thickness field simulated by the
Model+buoy+ssmi (Figure 11a) agrees reasonably well with
that observed by Bourke and McLaren [1992]. This is a
pattern of thicker ice off the Canadian Archipelago and
North Greenland coast and thinner ice in the eastern Arctic.
Compared to the Model only case, assimilating buoy data
makes the thicker ice even thicker, owing to an increased
production of ridged ice in the western Arctic, and the
thinner ice even thinner, owing to a stronger transpolar ice
stream and outflow (Figure 11c). In other words, the effect
of assimilating buoy data is to reduce ice in the eastern
Arctic and increase ice in the western Arctic. This is not so,
however, with the Model+ssmi run (Figure 11b). The
influence of SSM/I data is to increase ice in the areas near
the Canadian Archipelago, the coast of North Greenland,
Fram Strait, and Franz Josef Land, and to reduce ice near

the coast of Alaska and in the Chukchi and East Siberian
seas. The striking difference in ice thickness between the
Model+buoy and Model+ssmi runs is apparently linked to
the spatial pattern of ridged ice production, although they

0.8
Model only
oep Model+ssmi i
C
R Model+buoy
§ 0.4 S — Model+buoy+ssmi |
0.2 |
0.0 e

o 1 2 3 4 5 6 7 8 9 10
Ice deformation (% d7')

Figure 8. Distributions of modeled ice deformation
calculated over the Arctic Basin during 1993—-1997.
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Figure 9. Mean (a, d) ridged ice production fields and (b, c) difference fields, all for 1993—1997.

remain close in basin-wide averages of ridged ice produc-
tion, ridged ice volume, and total ice volume. The difference
field in Figure 11d reflects the influence of both SSM/I data
and buoy data.
4.4.2. Comparisons With Submarine
Ice Thickness Data

[37] The results presented so far have shown that assim-
ilating the ice motion data, particularly buoy data, leads to
greater ice outflow at Fram Strait. It also leads to a larger ice
deformation, which in turn results in increased production

of ridged ice. All of this ultimately influences the simulation
of'ice thickness. Is the influence detrimental to or helpful in
reducing the error of modeled ice thickness, and to what
extent? To address this question, we compare the simulated
ice thickness results with submarine observations of ice
thickness.

[38] The submarine ice thickness data are provided by the
National Snow and Ice Data Center. The data were acquired
by four submarine cruises during 1993—1997. The available
data along the tracks of the cruises are marked in Figure 12,

Table 4. Ridged Ice Production (in m yr~ ') and Ice Thickness (m) Averaged Over the Whole Arctic Basin for

1993-1997
Ridged Ice Ridged Ice Undeformed Ice Total Ice Seasonal Range of
Case Production Thickness Thickness Thickness Total Ice Thickness
Model only 0.35 0.64 1.78 2.42 0.88
Model+ssmi 0.73 1.22 1.29 2.51 1.07
Model+buoy 0.79 1.29 1.30 2.59 1.13
Model+buoy+ssmi 0.77 1.25 1.33 2.58 1.11
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Figure 10. Monthly mean thicknesses of (a) ridged ice, (b)
undeformed ice, and (c) total (ridged plus undeformed) ice.

where each circle represents a datum of ice thickness
averaged over a distance of ~10—50 km along the tracks.
For comparisons, we sampled the modeled ice thickness at
the location of each circle at the corresponding time. The
modeled ice thickness estimates were from 40 km x 40 km
grid cells, whereas the submarine data were collected along
a line.

[39] Figure 13 compares the modeled and observed ice
thicknesses along the four submarine tracks. Among all the
cases, the Model only case is least likely to capture the
observed variability of ice thickness along these tracks. On
the other hand, assimilating buoy data tends to occasion-
ally cause extreme ice thicknesses, such as those near
location F (see Figure 12), in between G and H, and after
H, as shown in Figure 13c. These thickness extrema
indicate that the buoy-induced ice deformation may be
excessive in those locations. The buoy-induced extrema
are somewhat suppressed by additionally assimilating
SSM/I data (Figure 13d). Assimilating both SSM/I and
buoy data significantly improves ice thickness in the
Beaufort Sea in 1996 (around G).

[40] Table 5 and Figure 14 provide an overall assessment
by comparing the modeled and observed thicknesses along
all four cruise tracks combined. Overall, the biases for the
four model runs are all within a range of 0.26 m. Of all the
runs, the case without data assimilation has the lowest
spatial variability (SD = 0.50) in ice thickness and lowest
model-data correlation (R = 0.45), which is also reflected
in Figure 14a. Assimilating only SSM/I motion data
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slightly raises the correlation and substantially increases
the spatial variability (SD = 0.81) to a level close to that of
submarine observations (SD = 0.84). This is also reflected
in Figure 14b that shows more points spreading vertically
than Figure 14a, but the Model+ssmi run also increases
bias and error SD over the Model only run. Hence
assimilating only SSM/I motion data does not necessarily
improve the error statistics of the simulated ice thickness
along the four submarine tracks.

[41] The buoy-induced spatial variability (SD = 0.83) is
close to the SSM/I-induced one, but the Model+buoy run
further increases the correlation over the Model only run.
The error SD of the Model+buoy run manages to be close
to that of the Model only case, even though the former has
a much greater SD than the latter. Assimilating both SSM/I
and buoy data achieves the best overall performance with
highest correlation and lowest error SD (also see Figure
14d). This is because buoy data often improve the model
simulation of ice thickness where SSM/I data do not, and
vice versa (Figure 13). Also, SSM/I data tend to suppress
the extreme thicknesses caused by buoy data alone. This
reveals the complementary roles that SSM/I data and buoy
data play in improving the simulation of ice thickness.

5. Concluding Remarks

[42] Large-scale sea-ice models have been improved in
recent years by incorporating more realistic ice dynamics
and thermodynamics. However, there are still many uncer-
tainties inherent in the forcing fields and in the model
components, resulting in errors in the transfer of heat, mass,
and momentum at the ice surface and bottom, and in the ice
albedo, ice strength, and ice ridging. Consequently, model
hindcasts of Arctic sea ice often deviate from reality. Model
errors may be reduced by assimilating observations to draw
the models toward reality. This paper investigates the effects
of assimilating ice motion data from buoys and satellite
imagery into a TED sea-ice model.

[43] The major issues about data assimilation are choos-
ing an assimilation scheme (optimal interpolation in our
case), knowing the error magnitude in the model and in the
data to be assimilated, and assessing the reduction in
modeling errors as a result of assimilation. The buoy data
are especially useful for constraining the model because
they have a measurement error (0.007 m s~ ') an order of
magnitude smaller than modeled ice motion error (0.070 m
s~ ). Assimilating buoy data substantially reduces the bias
and error SD of the modeled motions (Tables 1 and 2). The
SSM/I ice velocities are also useful for data assimilation
because their errors (0.058 m s~ '), although larger than
buoy errors, are still smaller than modeling errors, and
because SSM/I data provide more complete coverage than
buoys and improve model behavior where buoy coverage is
sparse, such as in the marginal seas. SSM/I data are not
available during the summer melt. The SSM/I two-day data
were chosen for data assimilation because they yield better
model results when compared with buoy drift data and
submarine ice thickness data. How big a role SSM/I data
play in an optimal interpolation assimilation procedure is
linked to their error variance. Changing their influence by
artificially varying their error variance does not improve the
model results.
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Figure 11.

[44] What does assimilation change and, in particular,
what does it improve? Without data assimilation, the mod-
eled ice motion is sluggish with excessive stoppage. Assim-
ilating motions leads to strengthened ice motion and
deformation and to substantially reduced stoppage. The
distribution of ice speed becomes much more like that of
observations (Figure 4a). Assimilation also leads to
strengthened ice outflow through Fram Strait. The error
SD of the modeled velocity, which is 0.070 m s~ without
assimilation, drops with assimilation to 0.041 m s~ ' in
winter and 0.056 m s~ ' in summer (Tables 1 and 2).

[45] The strengthened ice motion and deformation that
come with assimilation have major effects on ice thick-
ness. Assimilation produces more ridged ice, and more
total ice, and displays a greater seasonal amplitude of

Mean (a) ice thickness and (b, c, d) difference fields, all for 1993—-1997.

thickness. However, in all three data assimilation runs, the
ridged ice production, ridged ice volume, and total ice
volume averaged over the whole Arctic are similar. More
significantly, the spatial pattern of ice thickness is modi-
fied. When both buoy- and satellite-derived motions are
assimilated, the ice along the Canadian archipelago from
Banks Island to northeast Greenland is thicker by about
one meter. Ice in the central Arctic Ocean becomes a
couple tens of centimeters thicker, and ice in the marginal
seas becomes a couple tens of centimeters thinner. The
satellite data provide the thinning influence in the southern
Beaufort, Chukchi, and East Siberian seas; the buoys
provide the thinning influence in the eastern marginal
seas, and both provide a thickening influence elsewhere.
When compared with ice thickness observed from sub-
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Figure 12. Available submarine observations of ice thickness collected along four tracks of submarine
cruises in September 1993, April 1994, September 1996, and September—October 1997. Each circle in
the plot represents a record of ice thickness averaged over a distance of ~10—50 km along the tracks.
Solid lines represent approximate submarine paths where ice thickness data are not available. The
lowercase letters indicate the start (s) and end (e) of each track. The uppercase letters are marked for

analyzing the results.

marines, the model is brought slightly closer to thickness
data by assimilation. Without assimilation the correlation
between the model and observations is 0.45; assimilation
raises the correlation to 0.65. The standard deviation of
the error is reduced from 0.76 m without assimilation to
0.66 m with it (Table 5).

[46] What does assimilation tell us about likely sources
of error in our models? We find that assimilating ice

motion data tends to strengthen spatial gradients of
velocity. This is an indication that the wind fields used
to force models lack spatial resolution. Small, intense
features such as polar lows [e.g., Serreze et al, 1993]
are likely present not only in the North Atlantic, but also
over the Arctic Ocean where we have limited capability to
observe them. Our inability to fully resolve surface wind
fields limits our ability to simulate ice motion, deforma-
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Figure 13. Modeled and observed ice thicknesses along the four submarine cruise tracks in 1993, 1994,
1996, and 1997. The locations of the letters are given in Figure 12.

tion, and thickness. Motion assimilation somewhat miti-
gates the problem.

[47] It is not clear why buoy assimilation induces
sizably more ice volume outflow for 1993 and ice area
outflow for 1994 in Fram Strait, in comparison with
observations. We speculate that, if the observations are

accurate, this may be linked to the correlation length scale
L used for OI. Note that for simplicity the length scale was
set to be 736 km throughout the model domain. This value
was determined mainly by the model and buoy velocities
within the Arctic Basin and may not be suitable for the
Fram Strait region. With this predetermined length scale,

Table 5. Comparing Modeled and Observed Ice Thickness (m) Along 1993—-1997 Submarine

Tracks®
Number Mean Model SD of Model Error SD Correlation
Case of Data Thickness Bias Thickness (0,) (R)
Model only 639 2.39 0.18 0.50 0.76 0.45
Model+ssmi 639 2.47 0.26 0.81 0.82 0.50
Model+buoy 639 2.28 0.07 0.83 0.77 0.57
Model+buoy-+ssmi 639 2.37 0.16 0.70 0.66 0.65

#Observed thickness has a mean of 2.21 m and a SD of 0.84 m.
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Figure 14. Scatterplot of modeled ice thickness versus observed ice thickness. The solid lines are least

squares fits.

assimilating the velocities of often fast-moving buoys in
Fram Strait may tend to cause excessive ice speed for
some model grid cells, particularly in 1993 and 1994 when
there were relatively more buoys exiting Fram Strait. A
possible remedy is to determine a new correlation length
scale specifically for the Fram Strait region. This region-
dependent length scale is likely to be smaller than 736 km
because of the proximity of coastlines. As a result, the
long-range influence of the buoys in that region would not
be as strong as those inside the Arctic Basin and the
simulated ice outflow for 1993 and 1994 may be closer to
observations.

[48] Another concern is the area near the Canadian
archipelago where we have neither motion nor thickness

data, yet assimilation of motion data in the central Arctic
Ocean strongly influences ice thickness right up to the
coast. We find that if the optimal interpolation-induced
velocity component, the second term in equation (4), is
not reduced to zero at the model’s lateral boundaries,
spurious ice build-up occurs along the model coast, partic-
ularly near the North Greenland coast and the Canadian
Archipelago, as mentioned in Section 3.2. This is in line
with Meier and Maslanik’s [1999] report of unphysical ice
thickness changes in this region. Ice thickness observations
from Greenland all along the Canadian Archipelago would
be particularly valuable.

[49] Assimilating buoy data offers the most dramatic
reduction in the modeled errors in motion. Alone the buoy
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data can cause occasional high local deformation and
extreme values of ice thickness. SSM/I motion data tend
to mildly subdue the locally high deformation and thickness
extrema. They also help the model in the areas where few
buoys exist. SSM/I data and buoy data, when jointly
assimilated, tend to play complimentary roles. Assimilating
both data together gives the best overall performance in
simulating ice motion and ice thickness.
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